## metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## (2-Hydroxyacetato- $\kappa O^1$ )bis(1,10-phenanthroline- $\kappa^2 N, N'$ )copper(II) nitrate

#### Ya-Jie Kong\* and Zhuang-Dong Yuan

Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, Shandong, People's Republic of China Correspondence e-mail: kongyaj@jnxy.edu.cn

Received 13 March 2011; accepted 7 April 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.101; data-to-parameter ratio = 12.9.

In the title compound,  $[Cu(C_2H_3O_3)(C_{12}H_8N_2)_2]NO_3$ , the Cu<sup>II</sup> atom is coordinated by two phenanthroline (phen) ligands and one carboxyl-O atom of a hydroxyacetate anion in a distorted square-pyramidal geometry. The hydroxy group of the hydroxyacetate ligand links with the counter NO<sub>3</sub><sup>-</sup> anion *via* a pair of bifurcated O-H···O hydrogen bonds. The centroid-centroid distance of 3.5676 (14) Å between benzene rings of parallel phen ligands of adjacent molecules suggests the existence of  $\pi$ - $\pi$  stacking. Weak intermolecular C-H···O hydrogen bonding is also present in the crystal structure.

#### **Related literature**

For related structures, see: Carballo et al. (2001).



#### Experimental

Monoclinic, C2/c

Crystal data [Cu(C<sub>2</sub>H<sub>3</sub>O<sub>3</sub>)(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)<sub>2</sub>]NO<sub>3</sub> M<sub>r</sub> = 561.00

| <i>a</i> = | 21.718 | (4) | Å |
|------------|--------|-----|---|
| b =        | 14.347 | (3) | Å |
| c =        | 16.311 | (3) | Å |

| $\beta = 117.045 \ (3)^{\circ}$ |
|---------------------------------|
| $V = 4526.5 (16) \text{ Å}^3$   |
| Z = 8                           |
| Mo $K\alpha$ radiation          |

#### Data collection

| Bruker SMART 1000                    |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (SADABS; Sheldrick, 2004)            |
| $T_{\min} = 0.599, T_{\max} = 0.664$ |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ 343 parameters $wR(F^2) = 0.101$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 0.53 \text{ e } \text{\AA}^{-3}$ 4425 reflections $\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$ 

 $\mu = 1.02 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.024$ 

 $0.50 \times 0.40 \times 0.40$  mm

17009 measured reflections

4425 independent reflections

4047 reflections with  $I > 2\sigma(I)$ 

| Fable | 1 |  |  |  |
|-------|---|--|--|--|
|       |   |  |  |  |

Selected bond lengths (Å).

| Cu1-O4 | 1.9511 (15) | Cu1-N3 | 2.0037 (16) |
|--------|-------------|--------|-------------|
| Cu1-N1 | 2.0109 (16) | Cu1-N4 | 2.0449 (15) |
| Cu1-N2 | 2.2298 (16) |        |             |

#### Table 2

Hydrogen-bond geometry (Å,  $^\circ).$ 

| $D - H \cdots A$             | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|------------------------------|------|-------------------------|--------------|------------------|
| O6−H6A···O1                  | 0.82 | 2.15                    | 2.963 (3)    | 168              |
| $O6-H6A\cdots O3$            | 0.82 | 2.49                    | 3.135 (4)    | 137              |
| $C7 - H7A \cdots O3^{i}$     | 0.93 | 2.42                    | 3.351 (3)    | 176              |
| $C16 - H16A \cdots O1^{ii}$  | 0.93 | 2.53                    | 3.383 (4)    | 152              |
| $C18 - H18A \cdots O3^{iii}$ | 0.93 | 2.53                    | 3.456 (4)    | 172              |
| $C26-H26A\cdotsO6^{iv}$      | 0.97 | 2.44                    | 3.297 (3)    | 147              |
|                              |      |                         |              |                  |

Symmetry codes: (i)  $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$ ; (ii)  $x, -y + 2, z + \frac{1}{2}$ ; (iii)  $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 2$ ; (iv)  $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$ .

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Science Foundation of Jining University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5175).

#### References

- Bruker. (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carballo, R., Covelo, B., Balboa, S., Castiñeiras, A. & Niclós, J. (2001). Z. Anorg. Allg. Chem. 627, 948–954.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, m592 [doi:10.1107/81600536811013110]

### (2-Hydroxyacetato- $\kappa O^1$ )bis(1,10-phenanthroline- $\kappa^2 N, N'$ )copper(II) nitrate

### Y.-J. Kong and Z.-D. Yuan

#### Comment

The molecules  $[Cu(C_{12}H_8N_2)_2(C_2H_3O_3)]$  in three different solvents or anions(2-hydroxyacetate anion, 2-hydroxyacetate acid and acetonitrile solvent) have been reported (Carballo *et al.*, 2001).

Crystals  $[Cu(C_{12}H_8N_2)_2(C_2H_3O_3)]NO_3$  (I) were obtained by crystallized from ethanol-water solution. The molecular structure of (I) is shown in Fig. 1. In the title compound the Cu<sup>II</sup> atom is coordinated by two phenanthroline (phen) ligands and one carboxyl-O atom of a hydroxyacetate anion in a distorted square-pyramidal geometry (Table 1). The hydroxy group of the hydroxyacetate ligand links with the counter NO<sub>3</sub><sup>-</sup> anion via a pair of bifurcated O—H…O hydrogen bonds (Table 2). The centroid-to-centroid distance of 3.5676 (14) Å between benzene rings of parallel phen ligands of adjacent molecules suggests the existence of  $\pi$ - $\pi$  stacking. Weak intermolecular C—H…O hydrogen bonding is also present in the crystal structure.

#### **Experimental**

Copper nitrate (0.093 g, 0.5 mmol) was added to a mixed solution of hydroxyacetic acid (0.076 g, 1 mmol) in distilled water (10 ml) and 1,10-phenanthroline (0.090 g, 0.5 mmol) in ethanol (5 ml). The pH value of the mixture was adjusted to 7 with ammonia. The resulting solution was stirred for 1 h, and then filtered off. The filtrate was left to evaporate showly at room temperature. After a long time, blue block crystals were obtained.

#### Refinement

H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

#### Figures



Fig. 1. Molecular structure of the title compound drawn with displacement ellipsoids at the 30% probability level. All hydrogen atoms have been omitted for clarity.



Fig. 2. Part of an one-dimensional linear chains of the title compound.

F(000) = 2296

 $\theta = 2.5 - 28.2^{\circ}$ 

 $\mu = 1.02 \text{ mm}^{-1}$ T = 293 K

 $0.50 \times 0.40 \times 0.40 \text{ mm}$ 

Block, blue

 $D_{\rm x} = 1.646 {\rm Mg m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 5502 reflections

### (2-Hydroxyacetato- $\kappa O^1$ )bis(1,10-phenanthroline- $\kappa^2 N, N'$ )copper(II) nitrate

### Crystal data

```
[Cu(C<sub>2</sub>H<sub>3</sub>O<sub>3</sub>)(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)<sub>2</sub>]NO<sub>3</sub>

M_r = 561.00

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 21.718 (4) Å

b = 14.347 (3) Å

c = 16.311 (3) Å

β = 117.045 (3)°

V = 4526.5 (16) Å<sup>3</sup>

Z = 8
```

#### Data collection

| Bruker SMART 1000<br>diffractometer                                     | 4425 independent reflections                                             |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                                | 4047 reflections with $I > 2\sigma(I)$                                   |
| graphite                                                                | $R_{\rm int} = 0.024$                                                    |
| ω–scan                                                                  | $\theta_{\text{max}} = 26.0^{\circ},  \theta_{\text{min}} = 1.8^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 2004) | $h = -26 \rightarrow 26$                                                 |
| $T_{\min} = 0.599, T_{\max} = 0.664$                                    | $k = -17 \rightarrow 17$                                                 |
| 17009 measured reflections                                              | $l = -20 \rightarrow 20$                                                 |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                      |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
| $R[F^2 > 2\sigma(F^2)] = 0.033$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.101$               | H-atom parameters constrained                                                       |
| <i>S</i> = 1.06                 | $w = 1/[\sigma^2(F_o^2) + (0.0711P)^2 + 1.7595P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 4425 reflections                | $(\Delta/\sigma)_{\rm max} = 0.002$                                                 |
| 343 parameters                  | $\Delta \rho_{max} = 0.53 \text{ e } \text{\AA}^{-3}$                               |
| 0 restraints                    | $\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$                              |
|                                 |                                                                                     |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x             | у             | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|------|---------------|---------------|---------------|---------------------------|
| Cu1  | 0.352559 (11) | 0.810948 (15) | 0.864386 (15) | 0.03488 (11)              |
| C2   | 0.51483 (12)  | 0.63868 (16)  | 0.86753 (16)  | 0.0520 (5)                |
| H2A  | 0.5233        | 0.5752        | 0.8673        | 0.062*                    |
| C12  | 0.51725 (10)  | 0.98715 (15)  | 0.87161 (13)  | 0.0431 (4)                |
| C23  | 0.33565 (9)   | 0.80523 (11)  | 1.02687 (13)  | 0.0328 (4)                |
| C11  | 0.47143 (9)   | 0.91941 (13)  | 0.87363 (12)  | 0.0352 (4)                |
| C24  | 0.34342 (10)  | 0.78875 (14)  | 1.11575 (13)  | 0.0374 (4)                |
| C13  | 0.23293 (10)  | 0.93864 (14)  | 0.82592 (14)  | 0.0442 (4)                |
| H13A | 0.2283        | 0.9456        | 0.7667        | 0.053*                    |
| C25  | 0.27347 (10)  | 0.74094 (14)  | 0.69714 (13)  | 0.0403 (4)                |
| С9   | 0.48683 (10)  | 0.82262 (13)  | 0.87109 (12)  | 0.0356 (4)                |
| C21  | 0.28533 (9)   | 0.86956 (12)  | 0.96824 (12)  | 0.0338 (4)                |
| C17  | 0.30025 (11)  | 0.83895 (17)  | 1.14532 (14)  | 0.0458 (5)                |
| H17A | 0.3049        | 0.8286        | 1.2041        | 0.055*                    |
| C14  | 0.19071 (11)  | 0.99126 (15)  | 0.85214 (16)  | 0.0508 (5)                |
| H14A | 0.1590        | 1.0331        | 0.8110        | 0.061*                    |
| C22  | 0.24435 (9)   | 0.91847 (13)  | 0.99943 (14)  | 0.0396 (4)                |
| C20  | 0.42130 (10)  | 0.70152 (13)  | 1.04555 (14)  | 0.0406 (4)                |
| H20A | 0.4485        | 0.6717        | 1.0229        | 0.049*                    |
| C19  | 0.43112 (11)  | 0.67978 (14)  | 1.13422 (15)  | 0.0454 (5)                |
| H19A | 0.4638        | 0.6354        | 1.1690        | 0.055*                    |
| C1   | 0.45271 (12)  | 0.66987 (14)  | 0.86349 (15)  | 0.0444 (5)                |
| H1A  | 0.4197        | 0.6262        | 0.8589        | 0.053*                    |
| C8   | 0.39708 (12)  | 1.02971 (15)  | 0.87769 (16)  | 0.0486 (5)                |
| H8A  | 0.3566        | 1.0450        | 0.8807        | 0.058*                    |
| C18  | 0.39312 (11)  | 0.72315 (15)  | 1.16947 (13)  | 0.0442 (4)                |
| H18A | 0.4000        | 0.7095        | 1.2288        | 0.053*                    |
| C10  | 0.54928 (11)  | 0.79679 (15)  | 0.87236 (14)  | 0.0428 (4)                |
| C6   | 0.49801 (12)  | 1.07989 (15)  | 0.87063 (15)  | 0.0524 (5)                |
| H6B  | 0.5262        | 1.1272        | 0.8676        | 0.063*                    |
| C16  | 0.25344 (10)  | 0.90029 (15)  | 1.09058 (14)  | 0.0464 (5)                |
| H16A | 0.2262        | 0.9318        | 1.1120        | 0.056*                    |
| C15  | 0.19623 (11)  | 0.98105 (14)  | 0.93763 (16)  | 0.0478 (5)                |

| H15A | 0.1680       | 1.0156       | 0.9553       | 0.057*     |
|------|--------------|--------------|--------------|------------|
| C26  | 0.22641 (12) | 0.73763 (16) | 0.59474 (14) | 0.0500 (5) |
| H26A | 0.2470       | 0.6967       | 0.5666       | 0.060*     |
| H26B | 0.1828       | 0.7101       | 0.5848       | 0.060*     |
| C4   | 0.59588 (11) | 0.86792 (17) | 0.87278 (15) | 0.0525 (5) |
| H4A  | 0.6378       | 0.8512       | 0.8744       | 0.063*     |
| C5   | 0.57971 (11) | 0.95780 (17) | 0.87093 (16) | 0.0541 (5) |
| H5A  | 0.6100       | 1.0026       | 0.8691       | 0.065*     |
| C7   | 0.43853 (12) | 1.10155 (15) | 0.87403 (16) | 0.0548 (5) |
| H7A  | 0.4257       | 1.1634       | 0.8739       | 0.066*     |
| C3   | 0.56297 (12) | 0.70205 (16) | 0.87188 (17) | 0.0512 (5) |
| H3A  | 0.6046       | 0.6822       | 0.8745       | 0.061*     |
| O4   | 0.30007 (8)  | 0.81909 (10) | 0.73072 (10) | 0.0469 (4) |
| O5   | 0.28331 (10) | 0.66929 (11) | 0.74203 (12) | 0.0583 (4) |
| O6   | 0.21298 (10) | 0.82300 (12) | 0.54982 (11) | 0.0608 (4) |
| H6A  | 0.1892       | 0.8549       | 0.5662       | 0.091*     |
| 01   | 0.12811 (12) | 0.95952 (15) | 0.59033 (16) | 0.0832 (6) |
| O3   | 0.10001 (14) | 0.82669 (13) | 0.61923 (19) | 0.0869 (7) |
| O2   | 0.05765 (12) | 0.94510 (15) | 0.6477 (2)   | 0.0971 (8) |
| N4   | 0.37498 (8)  | 0.76262 (10) | 0.99287 (10) | 0.0341 (3) |
| N1   | 0.43912 (8)  | 0.75916 (11) | 0.86593 (10) | 0.0372 (3) |
| N2   | 0.41221 (8)  | 0.94125 (11) | 0.87707 (11) | 0.0391 (3) |
| N3   | 0.27921 (8)  | 0.87939 (11) | 0.88243 (10) | 0.0366 (3) |
| N5   | 0.09405 (10) | 0.91099 (13) | 0.61673 (14) | 0.0516 (4) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$    |
|-----|--------------|--------------|--------------|--------------|--------------|-------------|
| Cu1 | 0.03761 (16) | 0.03582 (16) | 0.03405 (16) | 0.00062 (8)  | 0.01877 (12) | 0.00072 (8) |
| C2  | 0.0573 (12)  | 0.0443 (11)  | 0.0552 (13)  | 0.0108 (10)  | 0.0263 (10)  | -0.0026 (9) |
| C12 | 0.0409 (10)  | 0.0465 (11)  | 0.0359 (10)  | -0.0102 (8)  | 0.0122 (8)   | -0.0016 (8) |
| C23 | 0.0316 (8)   | 0.0329 (9)   | 0.0347 (9)   | -0.0083 (6)  | 0.0159 (7)   | -0.0041 (6) |
| C11 | 0.0379 (9)   | 0.0373 (9)   | 0.0278 (8)   | -0.0050 (7)  | 0.0127 (7)   | -0.0013 (7) |
| C24 | 0.0376 (9)   | 0.0391 (9)   | 0.0365 (9)   | -0.0110 (8)  | 0.0178 (8)   | -0.0041 (7) |
| C13 | 0.0436 (10)  | 0.0413 (10)  | 0.0450 (10)  | 0.0025 (8)   | 0.0178 (9)   | 0.0084 (8)  |
| C25 | 0.0436 (10)  | 0.0472 (11)  | 0.0406 (10)  | 0.0035 (8)   | 0.0284 (8)   | 0.0006 (8)  |
| C9  | 0.0373 (9)   | 0.0403 (10)  | 0.0286 (9)   | -0.0014 (7)  | 0.0145 (7)   | -0.0008 (7) |
| C21 | 0.0317 (8)   | 0.0327 (9)   | 0.0373 (9)   | -0.0066 (7)  | 0.0158 (7)   | -0.0043 (7) |
| C17 | 0.0458 (11)  | 0.0577 (12)  | 0.0412 (11)  | -0.0122 (10) | 0.0263 (9)   | -0.0100 (9) |
| C14 | 0.0448 (11)  | 0.0360 (10)  | 0.0650 (14)  | 0.0057 (8)   | 0.0191 (10)  | 0.0062 (9)  |
| C22 | 0.0349 (9)   | 0.0360 (9)   | 0.0489 (10)  | -0.0049 (7)  | 0.0199 (8)   | -0.0097 (8) |
| C20 | 0.0391 (10)  | 0.0395 (10)  | 0.0410 (10)  | 0.0030 (8)   | 0.0165 (8)   | 0.0013 (8)  |
| C19 | 0.0464 (11)  | 0.0420 (11)  | 0.0402 (11)  | 0.0017 (8)   | 0.0129 (9)   | 0.0069 (8)  |
| C1  | 0.0518 (12)  | 0.0350 (10)  | 0.0487 (12)  | 0.0000 (8)   | 0.0247 (10)  | -0.0013 (8) |
| C8  | 0.0491 (11)  | 0.0383 (11)  | 0.0569 (12)  | 0.0001 (9)   | 0.0228 (10)  | -0.0034 (9) |
| C18 | 0.0478 (11)  | 0.0484 (11)  | 0.0338 (9)   | -0.0102 (9)  | 0.0162 (8)   | 0.0029 (8)  |
| C10 | 0.0390 (10)  | 0.0529 (11)  | 0.0356 (10)  | 0.0004 (8)   | 0.0162 (8)   | -0.0034 (8) |
| C6  | 0.0542 (12)  | 0.0420 (11)  | 0.0502 (12)  | -0.0171 (9)  | 0.0145 (10)  | -0.0017 (9) |

| C16 | 0.0432 (10) | 0.0530 (12) | 0.0498 (11) | -0.0073 (9)  | 0.0271 (9)  | -0.0155 (9)  |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C15 | 0.0431 (10) | 0.0380 (10) | 0.0617 (13) | 0.0004 (8)   | 0.0234 (10) | -0.0086 (9)  |
| C26 | 0.0539 (12) | 0.0556 (13) | 0.0425 (11) | -0.0028 (10) | 0.0237 (9)  | -0.0058 (9)  |
| C4  | 0.0373 (10) | 0.0688 (15) | 0.0522 (12) | -0.0069 (10) | 0.0210 (9)  | -0.0061 (10) |
| C5  | 0.0443 (11) | 0.0633 (14) | 0.0541 (13) | -0.0191 (10) | 0.0218 (10) | -0.0041 (10) |
| C7  | 0.0629 (13) | 0.0337 (10) | 0.0582 (13) | -0.0044 (9)  | 0.0190 (11) | -0.0027 (9)  |
| C3  | 0.0441 (11) | 0.0582 (13) | 0.0515 (13) | 0.0086 (9)   | 0.0218 (10) | -0.0042 (10) |
| O4  | 0.0547 (9)  | 0.0491 (9)  | 0.0351 (7)  | -0.0018 (6)  | 0.0188 (7)  | -0.0006 (6)  |
| 05  | 0.0761 (11) | 0.0511 (9)  | 0.0560 (10) | 0.0039 (8)   | 0.0374 (9)  | 0.0108 (7)   |
| O6  | 0.0698 (11) | 0.0724 (11) | 0.0412 (8)  | 0.0117 (8)   | 0.0261 (8)  | 0.0105 (7)   |
| 01  | 0.0908 (14) | 0.0763 (13) | 0.0973 (15) | -0.0311 (11) | 0.0556 (13) | 0.0017 (11)  |
| 03  | 0.127 (2)   | 0.0480 (11) | 0.1166 (19) | 0.0048 (11)  | 0.0819 (17) | 0.0051 (10)  |
| O2  | 0.0933 (15) | 0.0659 (13) | 0.164 (3)   | 0.0014 (11)  | 0.0865 (18) | -0.0056 (13) |
| N4  | 0.0343 (7)  | 0.0347 (8)  | 0.0336 (7)  | -0.0011 (6)  | 0.0156 (6)  | -0.0004 (6)  |
| N1  | 0.0416 (8)  | 0.0360 (8)  | 0.0384 (8)  | -0.0003 (6)  | 0.0222 (7)  | -0.0027 (6)  |
| N2  | 0.0425 (8)  | 0.0340 (8)  | 0.0408 (8)  | -0.0026 (6)  | 0.0189 (7)  | -0.0018 (6)  |
| N3  | 0.0356 (7)  | 0.0359 (8)  | 0.0383 (8)  | -0.0005 (6)  | 0.0168 (6)  | 0.0021 (6)   |
| N5  | 0.0493 (10) | 0.0467 (10) | 0.0585 (11) | -0.0076 (8)  | 0.0243 (9)  | -0.0015 (8)  |
|     |             |             |             |              |             |              |

Geometric parameters (Å, °)

| Cu1—O4   | 1.9511 (15) | C22—C15  | 1.399 (3) |
|----------|-------------|----------|-----------|
| Cu1—N1   | 2.0109 (16) | C22—C16  | 1.432 (3) |
| Cu1—N2   | 2.2298 (16) | C20—N4   | 1.316 (2) |
| Cu1—N3   | 2.0037 (16) | C20—C19  | 1.398 (3) |
| Cu1—N4   | 2.0449 (15) | C20—H20A | 0.9300    |
| С2—С3    | 1.363 (4)   | C19—C18  | 1.353 (3) |
| C2—C1    | 1.394 (3)   | C19—H19A | 0.9300    |
| C2—H2A   | 0.9300      | C1—N1    | 1.319 (3) |
| С12—С6   | 1.393 (3)   | C1—H1A   | 0.9300    |
| C12—C11  | 1.402 (3)   | C8—N2    | 1.312 (3) |
| C12—C5   | 1.425 (3)   | C8—C7    | 1.387 (3) |
| C23—N4   | 1.357 (2)   | C8—H8A   | 0.9300    |
| C23—C24  | 1.401 (3)   | C18—H18A | 0.9300    |
| C23—C21  | 1.418 (3)   | C10—C3   | 1.392 (3) |
| C11—N2   | 1.350 (2)   | C10—C4   | 1.435 (3) |
| С11—С9   | 1.433 (3)   | C6—C7    | 1.354 (3) |
| C24—C18  | 1.400 (3)   | С6—Н6В   | 0.9300    |
| C24—C17  | 1.429 (3)   | C16—H16A | 0.9300    |
| C13—N3   | 1.319 (3)   | C15—H15A | 0.9300    |
| C13—C14  | 1.397 (3)   | C26—O6   | 1.388 (3) |
| C13—H13A | 0.9300      | C26—H26A | 0.9700    |
| C25—O5   | 1.223 (3)   | C26—H26B | 0.9700    |
| C25—O4   | 1.266 (2)   | C4—C5    | 1.333 (3) |
| C25—C26  | 1.511 (3)   | C4—H4A   | 0.9300    |
| C9—N1    | 1.353 (2)   | C5—H5A   | 0.9300    |
| C9—C10   | 1.397 (3)   | C7—H7A   | 0.9300    |
| C21—N3   | 1.352 (2)   | С3—НЗА   | 0.9300    |
| C21—C22  | 1.398 (2)   | O6—H6A   | 0.8200    |
|          |             |          |           |

| C17—C16      | 1.334 (3)   | 01—N5         | 1.228 (3)   |
|--------------|-------------|---------------|-------------|
| С17—Н17А     | 0.9300      | 03—N5         | 1.215 (3)   |
| C14—C15      | 1.352 (3)   | 02—N5         | 1.217 (3)   |
| C14—H14A     | 0.9300      |               |             |
| O4—Cu1—N3    | 92.02 (6)   | C2—C1—H1A     | 118.8       |
| O4—Cu1—N1    | 95.97 (6)   | N2—C8—C7      | 123.3 (2)   |
| N3—Cu1—N1    | 168.63 (6)  | N2—C8—H8A     | 118.4       |
| O4—Cu1—N4    | 155.70 (6)  | С7—С8—Н8А     | 118.4       |
| N3—Cu1—N4    | 81.39 (6)   | C19—C18—C24   | 119.28 (18) |
| N1—Cu1—N4    | 94.38 (6)   | C19-C18-H18A  | 120.4       |
| O4—Cu1—N2    | 94.19 (6)   | C24—C18—H18A  | 120.4       |
| N3—Cu1—N2    | 92.45 (6)   | C3—C10—C9     | 117.9 (2)   |
| N1—Cu1—N2    | 78.94 (6)   | C3—C10—C4     | 122.8 (2)   |
| N4—Cu1—N2    | 109.36 (6)  | C9—C10—C4     | 119.3 (2)   |
| C3—C2—C1     | 119.4 (2)   | C7—C6—C12     | 120.4 (2)   |
| C3—C2—H2A    | 120.3       | С7—С6—Н6В     | 119.8       |
| C1—C2—H2A    | 120.3       | С12—С6—Н6В    | 119.8       |
| C6—C12—C11   | 116.7 (2)   | C17—C16—C22   | 121.22 (18) |
| C6—C12—C5    | 124.3 (2)   | С17—С16—Н16А  | 119.4       |
| C11—C12—C5   | 118.9 (2)   | С22—С16—Н16А  | 119.4       |
| N4—C23—C24   | 123.01 (17) | C14—C15—C22   | 119.98 (19) |
| N4—C23—C21   | 116.93 (16) | C14—C15—H15A  | 120.0       |
| C24—C23—C21  | 120.06 (17) | С22—С15—Н15А  | 120.0       |
| N2-C11-C12   | 122.69 (18) | O6—C26—C25    | 115.45 (19) |
| N2—C11—C9    | 117.74 (16) | O6—C26—H26A   | 108.4       |
| C12—C11—C9   | 119.57 (18) | С25—С26—Н26А  | 108.4       |
| C18—C24—C23  | 117.19 (18) | O6—C26—H26B   | 108.4       |
| C18—C24—C17  | 124.43 (18) | С25—С26—Н26В  | 108.4       |
| C23—C24—C17  | 118.38 (19) | H26A—C26—H26B | 107.5       |
| N3—C13—C14   | 122.1 (2)   | C5—C4—C10     | 120.6 (2)   |
| N3—C13—H13A  | 118.9       | С5—С4—Н4А     | 119.7       |
| C14—C13—H13A | 118.9       | C10—C4—H4A    | 119.7       |
| O5—C25—O4    | 124.3 (2)   | C4—C5—C12     | 121.8 (2)   |
| O5—C25—C26   | 118.8 (2)   | С4—С5—Н5А     | 119.1       |
| O4—C25—C26   | 116.88 (18) | С12—С5—Н5А    | 119.1       |
| N1—C9—C10    | 122.23 (18) | C6—C7—C8      | 118.7 (2)   |
| N1—C9—C11    | 118.14 (17) | С6—С7—Н7А     | 120.6       |
| C10—C9—C11   | 119.62 (17) | С8—С7—Н7А     | 120.6       |
| N3—C21—C22   | 123.04 (17) | C2—C3—C10     | 119.4 (2)   |
| N3—C21—C23   | 116.68 (16) | С2—С3—НЗА     | 120.3       |
| C22—C21—C23  | 120.28 (17) | С10—С3—НЗА    | 120.3       |
| C16—C17—C24  | 121.60 (19) | C25—O4—Cu1    | 110.50 (12) |
| С16—С17—Н17А | 119.2       | С26—О6—Н6А    | 109.5       |
| С24—С17—Н17А | 119.2       | C20—N4—C23    | 118.00 (16) |
| C15—C14—C13  | 119.6 (2)   | C20—N4—Cu1    | 130.53 (13) |
| C15—C14—H14A | 120.2       | C23—N4—Cu1    | 111.43 (12) |
| C13—C14—H14A | 120.2       | C1—N1—C9      | 118.67 (17) |
| C21—C22—C15  | 116.77 (19) | C1—N1—Cu1     | 125.39 (14) |
| C21—C22—C16  | 118.44 (18) | C9—N1—Cu1     | 115.93 (12) |
|              |             |               |             |

| C15—C22—C16                   | 124.77 (18) |             | C8—N2—C11    |              | 118.14 (17) |
|-------------------------------|-------------|-------------|--------------|--------------|-------------|
| N4—C20—C19                    | 122.40 (19) |             | C8—N2—Cu1    |              | 132.42 (15) |
| N4—C20—H20A                   | 118.8       |             | C11—N2—Cu1   |              | 109.03 (12) |
| C19—C20—H20A                  | 118.8       |             | C13—N3—C21   |              | 118.41 (17) |
| C18—C19—C20                   | 120.10 (19) |             | C13—N3—Cu1   |              | 128.11 (14) |
| С18—С19—Н19А                  | 120.0       |             | C21—N3—Cu1   |              | 112.99 (12) |
| С20—С19—Н19А                  | 120.0       |             | O3—N5—O2     |              | 117.7 (2)   |
| N1—C1—C2                      | 122.4 (2)   |             | O3—N5—O1     |              | 120.3 (2)   |
| N1—C1—H1A                     | 118.8       |             | O2-N5-O1     |              | 121.7 (2)   |
|                               |             |             |              |              |             |
| Hydrogen-bond geometry (Å, °) |             |             |              |              |             |
| D—H···A                       |             | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$  |
| O6—H6A…O1                     |             | 0.82        | 2.15         | 2.963 (3)    | 168         |
| O6—H6A…O3                     |             | 0.82        | 2.49         | 3.135 (4)    | 137         |
| C7—H7A…O3 <sup>i</sup>        |             | 0.93        | 2.42         | 3.351 (3)    | 176         |
| C16—H16A…O1 <sup>ii</sup>     |             | 0.93        | 2.53         | 3.383 (4)    | 152         |
| C18—H18A···O3 <sup>iii</sup>  |             | 0.93        | 2.53         | 3.456 (4)    | 172         |
| C26—H26A····O6 <sup>iv</sup>  |             | 0.97        | 2.44         | 3.297 (3)    | 147         |

Symmetry codes: (i) -x+1/2, y+1/2, -z+3/2; (ii) x, -y+2, z+1/2; (iii) -x+1/2, -y+3/2, -z+2; (iv) -x+1/2, -y+3/2, -z+1.







